Theory of Production

Lecture #4
Microeconomics

Topics

- 1. How firms produce goods and services.
- 2. Production in the short run.
- 3. Costs or factors of production.
- 4. Economies of scale and production in the long run.

Production of Goods and Services

Thinking About Production

- Production involves using inputs to produce an output
- Inputs include resources
 - Labor
 - Capital
 - Land
 - Raw materials
 - Other goods and services provided by other firms
- Way in which these inputs may be combined to produce output is the firm's technology.

Production in the Short Run

 When firms make short-run decisions, there is nothing they can do about their fixed inputs

Fixed inputs

- An input whose quantity must remain constant, regardless of how much output is produced
- Variable input
 - An input whose usage can change as the level of output changes
- Total product
 - Maximum quantity of output that can be produced from a given combination of inputs.

Production in the Short Run

• Marginal product of labor (MPL) is the change in total product (ΔQ) divided by the change in the number of workers hired (ΔL)

$$MPL = \frac{\Delta Q}{\Delta L}$$

 Tells us the rise in output produced when one more worker is hired, leaving all other inputs unchanged.

Total and Marginal Product

Marginal Returns To Labor

- As more and more workers are hired
 - MPL first increases
 - Then decreases
- Pattern is believed to be typical at many types of firms.

Diminishing Returns To Labor

- When the marginal product of labor is decreasing
 - There are diminishing marginal returns to labor
 - Output rises when another worker is added so marginal product is positive
 - But the rise in output is smaller and smaller with each successive worker
- Law of diminishing (marginal) returns states that as we continue to add more of any one input (holding the other inputs constant)
 - Its marginal product will eventually decline.

The Irrelevance of Sunk Costs

- Sunk cost is one that already has been paid, or must be paid, regardless of any future action being considered
- Should not be considered when making decisions
- Even a future payment can be sunk
 - If an unavoidable commitment to pay it has already been made.

Costs in the Short Run

- Fixed costs
 - Costs of a firm's fixed inputs
- Variable costs
 - Costs of obtaining the firm's variable inputs

Measuring Short Run Costs: Total Costs

- Types of total costs
 - Total fixed costs
 - Cost of all inputs that are fixed in the short run
 - Total variable costs
 - Cost of all variable inputs used in producing a particular level of output
 - Total cost
 - Cost of all inputs—fixed and variable
 - TC = TFC + TVC

Figure 5: The Firm's Total Cost Curves

Average Costs

- Average fixed cost (AFC)
 - Total fixed cost divided by the quantity of output produced

$$AFC = \frac{TFC}{Q}$$

- Average variable cost (TVC)
 - Total variable cost divided by the quantity of output produced

$$AVC = \frac{TVC}{Q}$$

- Average total cost (TC)
 - Total cost divided by the quantity of output produced

$$ATC = \frac{TC}{O}$$

Marginal Cost

- Marginal Cost
 - Increase in total cost from producing one more unit or output
- Marginal cost is the change in total cost (ΔTC) divided by the change in output (ΔQ)

$$MC = \frac{\Delta TC}{\Delta Q}$$

- Tells us how much cost rises per unit increase in output
- Marginal cost for any change in output is equal to shape of total cost curve along that interval of output.

Basic Formulas #1

Average Total Cost:

$$ATC = \frac{TC}{Q} = \frac{TFC + TVC}{Q} = AFC + AVC$$

Average fixed cost:

$$AFC = \frac{TFC}{Q}$$

Average variable cost:

$$AVC = \frac{TVC}{Q} = \frac{w \cdot L}{Q} = \frac{\frac{W \cdot L}{L}}{\frac{Q}{L}} = \frac{w}{\frac{Q}{L}} = \frac{w}{AP}$$

Basic Formulas #2

Marginal cost:

$$MC = \frac{\Delta TC}{\Delta Q} = \frac{\Delta TFC + \Delta TVC}{\Delta Q} = MFC + MVC$$

• Marginal fixed cost:
$$MFC = \frac{\Delta TFC}{\Delta Q} = 0$$

Marginal variable cost:

$$MVC = \frac{\Delta TVC}{\Delta Q} = \frac{w \cdot \Delta L}{\Delta Q} = \frac{\frac{w \cdot \Delta L}{\Delta L}}{\frac{\Delta Q}{\Delta L}} = \frac{w}{\frac{\Delta Q}{\Delta Q}} = \frac{w}{MP}$$

Question: The following table is composed of product items and cost items of a firm. Suppose the unit cost of capital and labour are \$10 and \$20 respectively. Fill in the missing columns.

Units of capital	Units of labour	TP	AP	MP	TFC	TVC	TC	ATC
4	1	2						
4	2	5						
4	3	10						
4	4	14						
4	5	14						
4	6	12						

Figure 6: Average And Marginal Costs

Average And Marginal Costs

- At low levels of output, the MC curve lies below the AVC and ATC curves
 - These curves will slope downward
- At higher levels of output, the MC curve will rise above the AVC and ATC curves
 - These curves will slope upward
- As output increases; the average curves will first slope downward and then slope upward
 - Will have a U-shape
- MC curve will intersect the minimum points of the AVC and ATC curves.

Production And Cost in the Long Run

- Long-run total cost
 - The cost of producing each quantity of output when the least-cost input mix is chosen in the long run
- Long-run average total cost
 - The cost per unit of output in the long run, when all inputs are variable
- The long-run average total cost (LRATC)
 - Cost per unit of output in the long-run

$$LRATC = \frac{LRTC}{Q}$$

Graphing the LRATC Curve

- A firm's LRATC curve combines portions of each ATC curve available to firm in the long run
- In the short run, a firm can only move along its current ATC curve
- In the long run it can move from one ATC curve to another by varying the size of its plant

Figure 7: Long-Run Average Total Cost

Figure 8: The Shape Of LRATC

Gains From Specialization

One reason for economies of scale is gains from specialization

- Opportunities for increased specialization occur at lower levels of output
 - With a relatively small plant and small workforce.

Diseconomies of Scale

- Long-run average total cost _____ as output increases
- As output continues to increase, most firms will reach a point where bigness begins to cause problems
- When long-run total cost rises more than in proportion to output, there are diseconomies of scale
 - LRATC curve slopes upward
- Diseconomies of scale are more likely at higher output levels

In sum...

- The LRATC, often shows the following pattern
 - Economies of scale (decreasing LRATC) at relatively low levels of output
 - Constant returns to scale (constant LRATC) at some intermediate levels of output
 - Diseconomies of scale (increasing LRATC) at relatively high levels of output
- This is why LRATC curves are typically Ushaped.

Implication to Public Policy

- 1. If technology is defined as "ways in which inputs may be combined to produce more outputs", how to incorporate technology in the organizations?
- 2. Large firms are mostly preferable for some reasons (diversification, cost-savings, etc.), but what are the limits?
- 3. Why in the long-run all costs are variables? What is the role of government to ensure economies of scale? What should be done if there is diseconomies of scale?